
Notes on CS236: Deep Generative Models

Hengyi Wang

April 2023

1. Introduction

This note is for my study of CS236: Deep Generative Models, which mainly focuses on generative
models that view the world through probability. In such a worldview, we can think of any kind of
observed data, say D, as a finite set of samples from an underlying distribution, say pdata. The goal
of any generative model is then to approximate the data distribution pdata given access to the dataset
D. The hope is that if we are able to learn a good generative model, we can use the learned model
for downstream inference.

Learning

We will be primarily interested in parametric approximations to the data distribution, which
summarizes all the information about the dataset D in a finite set of parameters. In the parametric
setting, we can think of the task of learning a generative model as picking the parameters within a
family of model distributions that minimizes some notion of distance between the model distribution
pθ and the data distribution pdata.

Figure 1: Illustration of learning a model distribution pθ from data distribution pdata.

We can specify our goal of learning the parameters of a generative model θ within a model family
M such that the model distribution pθ is close to the data distribution pdata as:

min
θ∈M

d(pdata, pθ), (1)

where d(·) is a notion of distance between probability distributions. To address the optimization
problem in Eq. 1, we need to answer following questions:

• What is the representation for the model family M?

• What is the objective function d(·)?

• What is the optimization procedure for minimizing d(·)?

1

Inference

For a discriminative model such as logistic regression, the fundamental inference task is to predict a
label for any given datapoint. Generative models, on the other hand, learn a joint distribution over
the entire data. There are three fundamental inference queries for evaluating a generative model:

• Density estimation: Given a datapoint x, what is the probability assigned by the model, i.e.,
pθ(x)?

• Sampling : How can we generate novel data from the model distribution, i.e., xnew ∼ pθ(x)?

• Unsupervised representation learning : How can we learn meaningful feature representations for
a datapoint x?

Considering an example of learning a generative model over dog images, we can intuitively expect a
good generative model to work as follows: For density estimation, we expect pθ(x) to be high for
dog images and low otherwise. Alluding to the name generative model, sampling involves generating
novel images of dogs beyond the ones we observe in our dataset. Finally, representation learning can
help discover high-level structure in the data such as the breed of dogs.

2. Autoregressive Models

Considering a joint disctribution p(x), we can factorize it over the n-dimensions by the chain rule of
probability as

p(x) =

n∏
i=1

p(xi|x1, x2, . . . , xi−1) =

n∏
i=1

p(xi|x<i), (2)

where x<i = [x1, x2, . . . , xi−1] denotes the vector of random variables with index less than i. For
simplicity, we assume the datapoints are binary, i.e., x ∈ {0, 1}n. The chain rule factorization can be
expressed graphically as a Bayesian network.

Figure 2: Graphical model for an autoregressive Bayesian network with no conditional independence
assumptions.

Such a Bayesian network that makes no conditional independence assumptions is said to obey the
autoregressive property. The term autoregressive originates from the literature on time-series models
where observations from the previous time steps are used to predict the value at the current time
step.

One problem is that if we allow for every conditional p(xi|x<i) to be specified in a tabular form,
then such a representation is fully general and can represent any possible distribution over n random
variables. However, the space complexity for such a representation grows exponentially with n.

In an autoregressive generative model, the conditionals are specified as parameterized functions
with a fixed number of parameters. That is, we assume the conditional distributions p(xi|x<i) to

2

a) FVSBN b) NADE

Figure 3: Illustration of a) fully visible sigmoid belief network over four variables, and b) A neural
autoregressive density estimator over four variables. The blue connections denote the tied
weights W [., i] used for computing the hidden layer activations.

correspond to a Bernoulli random variable and learn a function that maps the preceding random
variables x1, x2, . . . , xi1 to the mean of this distribution. Hence, we have

pθi(xi|x<i) = Bern(fi(x1, x2, . . . , xi−1)) (3)

where θi denotes the set of parameters used to specify the mean function fi : {0, 1}i−1 → [0, 1]. The
number of parameters of an autoregressive generative model is given by

∑n
i=1 |θi|.

In the simplest case, we can specify the function as a linear combination of the input elements
followed by a sigmoid non-linearity (to restrict the output to lie between 0 and 1). This gives us the
formulation of a Fully-visible sigmoid belief network (FVSBN).

fi(x1, x2, . . . , xi−1) = σ(α
(i)
0 + α

(i)
1 x1 + . . .+ α

(i)
i−1xi−1), (4)

where σ denotes the sigmoid function and θi = {α(i)
0 , α

(i)
1 , . . . , α

(i)
i−1} denote the parameters of the

mean function. The conditional for variable i requires i parameters, and hence the total number of
parameters in the model is given by

∑n
i=1 i = O(n2).

A natural way to increase the expressiveness of an autoregressive generative model is to use more
flexible parameterizations for the mean function e.g., multi-layer perceptrons (MLP). For example,
consider the case of a neural network with 1 hidden layer. The mean function for variable i can be
expressed as

hi = σ(Aix<i + ci) (5)

fi(x1, x2, . . . , xi−1) = σ(α(i)hi + bi), (6)

where hi ∈ Rd denotes the hidden layer activations for the MLP and θi = {Ai ∈ Rd×(i−1), ci ∈
Rd,α(i) ∈ Rd, bi ∈ R} are the set of parameters for the mean function µi(·). The total number of
parameters in this model is dominated by the matrices Ai and given by O(n2d).

The Neural Autoregressive Density Estimator (NADE) provides an alternate MLP-based parame-
terization. Parameters are shared across the functions used for evaluating the conditionals:

hi = σ(W.,<ix<i + c) (7)

fi(x1, x2, . . . , xi−1) = σ(α(i)hi + bi), (8)

3

where θ = {W ∈ Rd×n, c ∈ Rd, {α(i) ∈ Rd}ni=1, {bi ∈ R}ni=1}θ = {W ∈ Rd×n, c ∈ Rd, {α(i) ∈
Rd}ni=1, {bi ∈ R}ni=1} is the full set of parameters for the mean functions f1(·), f2(·), . . . , fn(·). The
weight matrix W and the bias vector c are shared across the conditionals. Therefore, the total
number of parameters gets reduced from O(n2d) to O(nd).

Learning and inference

Recall that learning a generative model involves optimizing the closeness between the data and model
distributions. One common measurement of distance between two distributions is KL divergence:

min
θ∈M

dKL(pdata, pθ) = Ex∼pdata
[log pdata(x)− log pθ(x)] . (9)

Since pdata does not depend on θ, we can equivalently recover the optimal parameters via maximizing
likelihood estimation:

max
θ∈M

Ex∼pdata
[log pθ(x)] . (10)

Here log pθ(x) is referred to as the log-likelihood of the datapoint x with respect to the model
distribution pθ. To approximate the expectation over the unknown pdata, we make an assumption:
points in the dataset D are sampled independently and identically distributed (IID) from pdata. This
allows us to obtain an unbiased Monte Carlo estimate of the objective as

max
θ∈M

1

|D|
∑
x∈D

log pθ(x) = L(θ|D). (11)

The maximum likelihood estimation (MLE) objective has an intuitive interpretation: pick the model
parameters θ ∈M that maximize the log-probability of the observed datapoints in D.

In practice, we optimize the MLE objective using mini-batch gradient ascent. At every iteration
t, we sample a mini-batch Bt of datapoints sampled randomly from the dataset and update the
parameters based on the computed gradient:

θ(t+1) = θ(t) + rt∇θL(θ(t)|Bt), (12)

where rt is the learning rate at iteration t. Now that we have a well-defined objective and optimization
procedure, the only remaining task is to evaluate the objective in the context of an autoregressive
generative model. To this end, we substitute the factorized joint distribution of an autoregressive
model in the MLE objective to get

max
θ∈M

1

|D|
∑
x∈D

n∑
i=1

log pθi(xi|x<i), (13)

where θ = {θ1, θ2, . . . , θn} now denotes the collective set of parameters for the conditionals.
Inference in an autoregressive model is straightforward. For density estimation of an arbitrary

point x, we simply evaluate the log-conditionals log pθi(xi|x<i) for each i and add these up to
obtain the log-likelihood assigned by the model to x. Sampling from an autoregressive model is a
simple sequential procedure. Finally, an autoregressive model does not directly learn unsupervised
representations of the data.

4

a) Details of RNN b) Comparison of RNN, LSTM, and GRU

Figure 4: Illustration of a) Details of RNN architecture and b) Comparison of vanilla RNN, LSTM,
and GRU.

Autoregressive model family

Recurrent Neural Nets (RNN). RNN aims at addressing the challenge of modeling p(xt|x1:t−1;α
t)

as "History" x1:t−1 keeps getting longer. Thus, RNN proposes to keep a summary and recursively
update it as follows:

Summary update rule: ht+1 = tanh (Whhht +Wxhxt+1)

Prediction: ot+1 = Whyht+1

Summary initalization: h0 = b0

(14)

Here ht is a summary of inputs seen till time t, output layer specifies parameters for conditional
p(xt|x1:t−1). One problem of vanilla RNN is that through backpropagation, the gradient might
get smaller/larger through time and lead to a vanishing/exploding gradient problem at the earlier
time step. To overcome this problem two variants of RNN: Gated Recurrent Unit (GRU) and Long
Short-Term Memory (LSTM) are proposed.
Long Short Term Memory (LSTM). LSTM aims to address the problem of the vanish-
ing/exploding gradient in RNN. The cell state and three gates (input gate, forget gate, output
gate) are proposed. The feed-forward process can be written as:

ft = σ(Wf · [ht−1, xt] + bf)

it = σ(Wi · [ht−1, xt] + bi)

ot = σ(Wo · [ht−1, xt] + bo)

C̃t = tanh(Wc · [ht−1, xt] + bc)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t

ht = ot ⊙ tanh(Ct),

(15)

where we can find out that LSTM uses ft as the weight for cell states from the previous time step i.e.
Ct−1. This is referred to as forget gate. it is then used as the weight for merging information into
the cell state Ct. This is referred to as the input gate. Finally, the output gate would give the final
output based on the cell state Ct and ot.
Gated Recurrent Unit (GRU). In comparison to LSTM, GRU is much more simple as it does
not use cell states. Instead, GRU only uses hidden states with two gates (Update gate, and reset
gate) to control the hidden states. The feed-forward process can be written as:

zt = σ(Wz · [ht−1, xt] + bz)

rt = σ(Wr · [ht−1, xt] + br)

h̃t = tanh(Wh · [rt ⊙ ht−1, xt] + bh)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t−1,

(16)

5

Figure 5: Illustration of the masked convolution and the corresponding blind spot in PixelCNN.

where we can find out that the reset gate uses rt as the weight for hidden states from the previous
time step ht−1, and the update gate uses zt to update the hidden state.
PixelCNN. The idea of Pixel CNN is to predict the next pixel given the context (a neighborhood of
pixels) based on convolutional architecture. To make it an autoregressive model, the convolution
kernel needs to be masked as in Fig. 5. Note as the image usually contain three color channels, we
can formulate the conditional probability in the sequential order of red, green, and blue:

p(xi|x<i}) = p(xred
i |x<i})p(xgreen

i |x<i, x
red
i })p(xblue

i |x<i, x
red
i , xgreen

i }) (17)

One problem of the PixelCNN is that masked convolution will cause the blind spot as in Fig. 5.
GatedPixelCNN solves such an issue by stacking the horizontal and vertical masked convolution.

3. Variational Autoencoder

Autoencoder (AE) aims to learn an identity function in an unsupervised way to reconstruct the
original input while compressing the data in the process so as to discover a more efficient and
compressed representation. The model contains an encoder g(·) parameterized by ϕ and a decoder
f(·) parameterized by θ. The low-dimensional code learned for input x in the bottleneck layer is
z = gϕ(x) and the reconstructed input is x′ = fθ(gϕ(x)).

a) Autoencoder b) Variational Autoencoder

Figure 6: Comparison of a) Autoencoder b) variational Autoencoder.

The parameters (θ, ϕ) are learned together to output a reconstructed data sample the same as the
original input, x ≈ fθ(gϕ(x)), or in other words, to learn an identity function. The training objective
can be a simple MSE loss:

6

LAE(θ, ϕ) =
1

n

n∑
i=1

(x(i) − fθ(gϕ(x
(i))))2. (18)

The idea of the Variational Autoencoder (VAE) is deeply rooted in the methods of the variational
Bayesian and graphical models. Instead of mapping the input into a fixed vector, we want to map it
into a distribution. Let’s label this distribution as pθ, parameterized by θ. The relationship between
the data input x and the latent encoding vector z can be fully defined by:

• Prior pθ(z)

• Likelihood pθ(x|z)

• Posterior pθ(z|x)

Assuming that we know the optimal parameter θ⋆, which maximize the probability of generating
real data samples (we use the log probability here):

θ∗ = argmax
θ

n∑
i=1

log pθ(x
(i)), (19)

where

pθ(x
(i)) =

∫
pθ(x

(i)|z)pθ(z)dz. (20)

It is not easy to compute pθ(x
(i) as it is very expensive to check all the possible values of z. Thus,

we need a new approximation function to output what is a likely code given an input x, qϕ(z|x)
parameterized by ϕ.

Figure 7: Illustration of Variational Autoencoder.

Fig. 7 illustrates the pipeline of the variational autoencoder. The conditional probability pθ(x|z)
defines a generative model, which is also known as a probabilistic decoder. The approximation
function qϕ(z|x) is the probabilistic encoder.

Loss Function: Evidence Lower Bound (ELBO)

The estimated posterior qϕ(z|x) should be very close to pθ(x|z). We can use Kullback-Leibler (KL)
divergence to quantify the distance between these two distributions. In our case we want to minimize
DKL(qϕ(z|x)|pθ(z|x)) with respect to ϕ. We can expand the equation:

7

DKL(qϕ(z|x)∥pθ(z|x))

=

∫
qϕ(z|x) log

qϕ(z|x)
pθ(z|x)

dz

=

∫
qϕ(z|x) log

qϕ(z|x)pθ(x)
pθ(z,x)

dz ; Because p(z|x)=p(z,x)/p(x)

=

∫
qϕ(z|x)

(
log pθ(x) + log

qϕ(z|x)
pθ(z,x)

)
dz

= log pθ(x) +

∫
qϕ(z|x) log

qϕ(z|x)
pθ(z,x)

dz ; Because
∫
q(z|x)dz=1

= log pθ(x) +

∫
qϕ(z|x) log

qϕ(z|x)
pθ(x|z)pθ(z)

dz ; Because p(z,x)=p(x|z)p(z)

= log pθ(x) + Ez∼qϕ(z|x)[log
qϕ(z|x)
pθ(z)

− log pθ(x|z)]

= log pθ(x) +DKL(qϕ(z|x)∥pθ(z))− Ez∼qϕ(z|x) log pθ(x|z)

Thus, we will have

DKL(qϕ(z|x)∥pθ(z|x)) = log pθ(x) +DKL(qϕ(z|x)∥pθ(z))− Ez∼qϕ(z|x) log pθ(x|z). (21)

Once rearrange the left and RHS of the equation:

log pθ(x)−DKL(qϕ(z|x)∥pθ(z|x)) = Ez∼qϕ(z|x) log pθ(x|z)−DKL(qϕ(z|x)∥pθ(z)). (22)

We can find that the LHS of the Eq. 22 is exactly what we want to maximize: 1) we want to maximize
the log-likelihood of generating real data log pθ(x) and also minimize the difference between the real
and estimated posterior distributions DKL(qϕ(z|x)∥pθ(z|x)). Note that pθ(x) is fixed with respect to
qϕ. The negation of the Eq. 22 defines our loss function:

LVAE(θ, ϕ) = − log pθ(x) +DKL(qϕ(z|x)∥pθ(z|x)) (23)
= −Ez∼qϕ(z|x) log pθ(x|z) +DKL(qϕ(z|x)∥pθ(z)) (24)

In Variational Bayesian methods, this loss function is known as the variational lower bound, or
evidence lower bound. The “lower bound” part in the name comes from the fact that KL divergence
is always non-negative and thus −LVAE is the lower bound of log pθ(x):

−LVAE = log pθ(x)−DKL(qϕ(z|x)∥pθ(z|x)) ≤ log pθ(x). (25)

Therefore by minimizing the loss, we are maximizing the lower bound of the probability of
generating real data samples.

Reparameterization Trick

The expectation term in Eq. 24 invokes generating samples from z ∼ qϕ(z|x), such process cannot
backpropagate the gradient. Thus, to make it trainable, we need the reparameterization trick:
express the random variable z as a deterministic variable z = Tϕ(x, ϵ), where ϵ is an auxiliary
independent random variable, and the transformation function Tϕ parameterized by ϕ converts ϵ to
z. For example, a common choice of the form of qϕ(z|x) is a multivariate Gaussian with a diagonal
covariance structure:

8

z ∼ qϕ(z|x(i)) = N (z;µ(i),σ2(i)I)

z = µ+ σ ⊙ ϵ, where ϵ ∼ N (0, I) ; Reparameterization trick.

where ⊙ refers to element-wise product. The reparameterization trick works for other types of
distributions as well. In the multivariate Gaussian case, we make the model trainable by learning the
mean µ and variance σ of the distribution explicitly using the reparameterization trick, while the
stochasticity remains in the random variable ϵ ∼ N (0, I).

4. Normalizing Flow Models

Normalizing flow is another type of likelihood-based generative model. Let us recall the previous two
types of likelihood-based generative models:

• Autoregressive Models: pθ(x) =
∏N

i=1 pθ(xi|x<i)

• Variational Autoencoders: pθ(x) =
∫
pθ(x, z)dz

Autoregressive models provide tractable likelihoods but no direct mechanism for learning features,
whereas variational autoencoders can learn feature representations but have intractable marginal
likelihoods. Normalizing flows, instead, combines the best of both worlds, allowing both feature
learning and tractable marginal likelihood estimation.

Change of Variables Formula

In normalizing flows, we wish to map simple distributions (easy to sample and evaluate densities)
to complex ones (learned via data). The change of variables formula describes how to evaluate the
densities of a random variable that is a deterministic transformation from another variable. Given
two random variables Z and X, the mapping between Z and X, given by f : Rn → Rn, is invertible
such that X = f(Z) and Z = f−1(X). Then,

pX(x) = pZ(f
−1(x))

∣∣∣∣det
(
∂f−1(x)

∂x

)∣∣∣∣ , (26)

where x and z need to be continuous and have the same dimension. Since for any invertible matrix
A, det(A−1) = det(A)−1, we have

pX(x) = pZ(z)

∣∣∣∣det
(
∂f(z)

∂z

)∣∣∣∣−1

(27)

Formulation of Normalizing Flow

Let us consider a directed, latent-variable model over observed variables X and latent variables Z.
In a normalizing flow model, the mapping between Z and X, given by fθ : Rn → Rn, is deterministic
and invertible such that X = fθ(Z) and Z = f−1

θ (X). Using change of variables, the marginal
likelihood p(x) is given by

pX(x; θ) = pZ(f
−1
θ (x))

∣∣∣∣det
(
∂f−1

θ (x)

∂x

)∣∣∣∣ . (28)

Different from autoregressive models and variational autoencoders, deep normalizing flow models
require specific architectural structures:

9

• The input and output dimensions must be the same

• The transformation must be invertible

• Computing the determinant of the Jacobian needs to be efficient (and differentiable)

Normalizing Flow Model Family

The Planar Flow introduces the following invertible transformation

x = fθ(z) = z+ uh(w⊤z+ b)x = fθ(z) = z+ uh(w⊤z+ b) (29)

parametrized by θ = (w,u, b), where h(·) is a non-linearity. The absolute value of the determinant of
the Jacobian is given by

∣∣∣∣det
(
∂f(z)

∂z

)∣∣∣∣ = ∣∣1 + h′(w⊤z+ b)u⊤w
∣∣ . (30)

However, here u,w, b, h(·) needed to be restricted in order to be invertible. Note that while fθ(z)
is invertible, computing f−1

θ (z) could be difficult analytically. The following models address this
problem, where both fθ and f−1

θ have simple analytical forms.
The Nonlinear Independent Components Estimation (NICE) model and Real Non-Volume Pre-

serving (RealNVP) model composes two kinds of invertible transformations: additive coupling layers
and rescaling layers. The coupling layer in NICE partitions a variable z into two disjoints subsets say
z1 and z2. Then it applies the following transformation:
Forward mapping z→ x:

1. x1 = z1, which is an identity mapping.

2. x2 = z2 +mθ(z1), where mθ is a neural network.

Inverse mapping x→ z:

1. z1 = x1, which is an identity mapping.

2. z2 = z2 −mθ(x1), which is the inverse of the forward transformation.

Therefore, the Jacobian of forward mapping is

∂f(z)

∂z
=

[
∂f1
z1

∂f1
z2

∂f2
z1

∂f2
z2

]
=

[
1 0

m
′

θ(z1 1

]
, (31)

which is a lower triangular matrix and its determinant is simply the product of the elements on the
diagonal, which is 1. Therefore, this defines a volume-preserving transformation. RealNVP adds
scaling factors to the transformation:

x2 = exp(sθ(z1))⊙ z2 +mθ(z1), (32)

where ⊙ denotes the element-wise product. This results in a non-volume preserving transformation.
Some autoregressive models can also be interpreted as flow models. Let us consider a Gaussian

autoregressive model

10

a) Forward mapping b) Backward mapping

Figure 8: Illustration of a) forward mapping and b) backward mapping of a MAF model.

p(x) =

n∏
i=1

p(xi|x<i) (33)

such that p(xi|x<i) = N (µi(x1, . . . , xi−1), exp(αi(x1, . . . , xi−1))
2). Here µi(·) and αi(·) are neural

networks for i > 1 and constant for i = 1. The sampling of this model is:

• Sample zi ∼ N (0, 1) for i = 1, . . . , n

• Let x1 = exp(α1)z1 + µ1. Compute µ2(x1), α2(x1)

• Let x2 = exp(α1)z2 + µ2. Compute µ3(x1, x2), α3(x1, x2)

• Let x3 = exp(α3)z3 + µ3 ...

We can consider this Gaussian autoregressive model as a flow model by transforming samples from
standard Gaussian (z1, z2, . . . , zn) to those generated from the model (x1, x2, . . . , xn) via invertible
transformations (parameterized by µi(·), αi(·)).

Masked Autoregressive Flow (MAF) uses this interpretation. As shown in Fig. 8, the forward
and backward mapping of MAF are:
Forward mapping z→ x:

1. Let x1 = exp(α1)z1 + µ1. Compute µ2(x1), α2(x1)

2. Let x2 = exp(α1)z2 + µ2. Compute µ3(x1, x2), α3(x1, x2)

3. Let x3 = exp(α3)z3 + µ3 ...

Inverse mapping x→ z:

1. Compute all µi, αi given x

2. Let z1 = (x1 − µ1)/ exp(α1) (scale and shift)

3. Let z2 = (x2 − µ2)/ exp(α2)

4. Let z3 = (x3 − µ3)/ exp(α3) ...

One problem of MAF is that the computational complexity of sampling is O(n), where n is the
dimension of the samples. To address the sampling problem, the Inverse Autoregressive Flow (IAF)
simply inverts the generating process of MAF to achieve fast sampling. However, computing the
likelihood of new data points would be slow.

11

Parallel WaveNet combines the best of both worlds for IAF and MAF where it uses an IAF
student model to retrieve sample and a MAF teacher model to compute likelihood. The teacher model
can be efficiently trained via maximum likelihood, and the student model is trained by minimizing
the KL divergence between itself and the teacher model. Since computing the IAF likelihood for an
IAF sample is efficient, this process is efficient.

5. Generative Adversarial Network (GAN)

Generative Adversarial Network (GAN) is a likelihood-free learning method that considers objectives
that do not depend directly on a likelihood function. Considering two-sample tests: given a data
distribution S1 = D = {x ∼ pdata} and a model distribution S2 = {x ∼ pθ}, we aim to train the
generative model to minimize a two-sample test objective between S1 and S2. However, finding
a two-sample test objective in high dimensions is hard. Thus, the key idea of GAN is to learn a
statistic that maximizes a suitable notion of distance between the two sets of samples S1 and S2, i.e.
learn any functions (e.g. neural networks) that try to distinguish "real" samples from the data and
the "fake" samples generated from the model. The training objective for the discriminator D is:

max
D

V (G,D) = Ex∼pdata [logD(x)] + Ex∼pG
[log(1−D(x))] . (34)

For a fixed generator G, the discriminator is performing the binary classification with the cross
entropy objective: assign probability 1 to true data points x ∼ pdata, and probability 0 to fake
samples x ∼ pG. The optimal discriminator should be:

D⋆
G(x) =

pdata(x)

pdata(x) + pG(x)
∈ [0, 1] . (35)

Once the generator is trained to its optimal, pG gets very close to pdata. When pG = pdata, D⋆
G(x)

becomes 1/2.
In addition to the discriminator, GAN also has a generator that plays a two-player minimax game

between a generator and a discriminator. The generator is a directed latent variable model with a
deterministic mapping between z and x given Gθ, that minimizes a two-sample test objective. The
training objective for the generator G is:

min
G

max
D

V (G,D) = Ex∼pdata [logD(x)] + Ex∼pG
[log(1−D(x))] . (36)

For the optimal discriminator D⋆
G(·), we have

V (G,D∗
G(x))

= Ex∼pdata

[
log

pdata (x)

pdata (x) + pG(x)

]
+ Ex∼pG

[
log

pG(x)

pdata (x) + pG(x)

]
= Ex∼pdata

[
log

pdata (x)
pdata (x)+pG(x)

2

]
+ Ex∼pG

[
log

pG(x)
pdata (x)+pG(x)

2

]
− log 4

= DKL

[
pdata ,

pdata + pG
2

]
+DKL

[
pG,

pdata + pG
2

]
︸ ︷︷ ︸

2× Jenson-Shannon Divergence (JSD)

− log 4

= 2DJS [pdata , pG]− log 4,

(37)

12

where

DJS [p, q] =
1

2

(
DKL

[
p,

p+ q

2

]
+DKL

[
q,

p+ q

2

])
(38)

is also called the symmetric KL divergence. For the optimal discriminator D⋆
G⋆(·) and the generator

G⋆(·), we have

V (G⋆, D⋆
G⋆(x)) = − log 4. (39)

The GAN training algorithm is as follows:

Algorithm 1 GAN training algorithm

Training objective:

min
θ

max
ϕ

V (Gθ, Dϕ) = Ex∼pdata [logDϕ(x)] + Ez∼p(z) [log(1−Dϕ(Gθ(z)))] .

1. Sample minibatch of m training points x(1),x(2), . . . ,x(m) from D
2. Sample minibatch of m training points z(1), z(2), . . . , z(m) from pz
3. Update the discriminator parameter ϕ by stochastic gradient ascent:

∇ϕV (Gθ, Dϕ) =
1

m
∇ϕ

m∑
i=1

[
logDϕ(x

(i)) + log(1−Dϕ(Gθ(z
(i))))

]
.

3. Update the generator parameter θ by stochastic gradient ascent:

∇θV (Gθ, Dϕ) =
1

m
∇θ

m∑
i=1

log(1−Dϕ(Gθ(z
(i)))).

4. Repeat for a fixed number of epochs

Problems of GAN

Mode collapse. During training, the generator may collapse to a setting where it always produces
same outputs, this is commonly referred as mode collapse, i.e. the model fails to learn to represent
the real-world distribution and stucks in a small space with extremely low variety.
Vanishing gradient. The supports of pdata and pG lie on low dimensional manifolds. They are
almost certainly gonna to be disjoint. In that case, we are always capable of finding a perfect
discriminator that separates real and fake samples 100% correctly. In that case, we will have
D(x) = 1,∀x ∈ pdata and D(x) = 0,∀x ∈ pG and the gradient for generator falls to zero. Thus, the
training of a GAN faces an dilemma: a perfect discriminator results in zero gradient while a bad
discriminator provides inaccurate gradient. This makes the training of GAN become very instable.

Wasserstein GAN (WGAN)

Given two densities p and q, the f-divergence is given by

Df (p, q) = Ex∼q

[
f(

p(x)

q(x)
)

]
. (40)

13

For f-divergence, the support of q has to cover the support of p. Otherwise discontinuity arises in
f-divergences. Here is an example:

Let p(x) =

{
1, x = 0
0, x ̸= 0

, and qθ(x) =

{
1, x = θ

0, x ̸= θ

DKL (p, qθ) =

{
0, θ = 0

∞, θ ̸= 0

DJS (p, qθ) =

{
0, θ = 0

log 2, θ ̸= 0

(41)

We can find out that no matter what value θ is, the KL divergence is always ∞ and JS divergence is
always log 2. Thus, a smoother distance D(p, q) that is defined when p and q have disjoint supports
is needed.

Wasserstein Distance is a measure of the distance between two probability distributions. It is
also called Earth Mover’s distance, short for EM distance because informally it can be interpreted as
the minimum energy cost of moving and transforming a pile of dirt in the shape of one probability
distribution to the shape of the other distribution. The distance can be written as

Dw(p,q) = inf
γ∼Π(p,q)

E(x,y)∼γ [∥x− y∥], (42)

where Π(p, q) is the set of all possible joint probability distributions between p and q. One joint
distribution γ ∈ Π(p, q) describes one dirt transport plan. Precisely γ(x,y) states the percentage of
dirt should be transported from point x to y so as to make x follow the same probability distribution
of y. In this case, we can get

Dw (p, qθ) = ∥θ∥. (43)

However, it is intractable to exhaust all the possible joint distributions in Π(p, q) to compute
infγ∼Π(p,q). Thus, based on Kantorovich-Rubinstein duality, WGAN transforms the Eq. 42 into

Dw(p, q) =
1

K
sup

∥f∥L≤K

Ex∼p[f(x)]− Ex∼q[f(x)], (44)

where sup (supremum) is the opposite of inf (infimum); we want to measure the least upper bound or,
in even simpler words, the maximum value. Thus, the training objective of WGAN with discriminator
Dϕ(x) and generator Gθ(z) is

min
θ

max
ϕ

Ex∼pdata [Dϕ(x)]− Ez∼p(z)[Dϕ(Gθ(z))]. (45)

The Lipschitzness of Dϕ(x) is enforced through weight clipping or gradient penalty. In comparison
to the original GAN, the changes of WGAN can be summarized as: 1) Remove the Sigmoid in the
output layer of the discriminator as WGAN needs to regress the Wasserstein distance. 2) No log in
the loss 3) Weight clipping or gradient penalty 4) Use optimizer without momentum, e.g. RMSProp,
SGD. (Empirical conclusion).

14

6. Energy-based Models (EBMs)

Let us consider a probability distribution p(x). To make a valid probability distribution, it needs to
satisfy two criteria: 1) Non-negative, and 2) sum-to-one. Thus, given any gθ(x) that is non-negative,
we can parameterize p(x) as

pθ(x) =
1

Volume(gθ)
gθ(x) =

1∫
gθ(x)dx

gθ(x). (46)

For EBMs, we usually use a function with exponential form gθ(x) = exp(Eθ(x)) instead of a non-
smooth function to capture the large variations in the probability. Thus, the density given by an
EBM can be written as

pθ(x) =
exp(−Eθ(x))

Zθ
, (47)

where Eθ(x) is the energy, which is a nonlinear regression function with parameters θ, and Zθ

denotes the normalizing constant:

Zθ =

∫
exp(−Eθ(x)) dx (48)

which is constant w.r.t x but is a function of θ. Since Zθ is a function of θ, evaluation and
differentiation of log pθ(x) w.r.t. its parameters involve a typically intractable integral.

Maximum likelihood Training of EBMs

Let pθ(x) be a probabilistic model parameterized by θ, and pdata(x) be the underlying data distribution
of a dataset, we can fit pθ(x) to pdata(x) by maximizing the expected log-likelihood function over the
data distribution, defined by

Ex∼pdata(x)[log pθ(x)]

as a function of θ. Here the expectation can be easily estimated with samples from the dataset.
Maximizing likelihood (ML) is equivalent to minimizing the KL divergence between pdata(x) and
pθ(x), because

−Ex∼pdata(x)[log pθ(x)] = DKL(pdata(x) ∥ pθ(x))− Ex∼pdata(x)[log pdata(x)]

= DKL(pdata(x) ∥ pθ(x))− constant,

where the second equality holds because Ex∼pdata(x)[log pdata(x)] does not depend on θ.
Although we cannot directly compute the likelihood of an EBM due to the intractable normalizing

constant Zθ, we can still estimate the gradient of the log-likelihood and perform ML with gradient
ascent. In particular, the gradient of log-probability in Eq. 47 decomposes into two terms:

∇θ log pθ(x) = −∇θEθ(x)−∇θ logZθ. (49)

The gradient of −∇θEθ(x) is straightforward to estimate with automatic differentiation. However, it
is challenging to approximate the ∇θ logZθ as it is intractable. This gradient term can be rewritten
as the following expection:

15

∇θ logZθ = ∇θ log

∫
exp(−Eθ(x))dx

(i)
=

(∫
exp(−Eθ(x))dx

)−1

∇θ

∫
exp(−Eθ(x))dx

=

(∫
exp(−Eθ(x))dx

)−1 ∫
∇θ exp(−Eθ(x))dx

(ii)
=

(∫
exp(−Eθ(x))dx

)−1 ∫
exp(−Eθ(x))(−∇θEθ(x))dx

=

∫ (∫
exp(−Eθ(x))dx

)−1

exp(−Eθ(x))(−∇θEθ(x))dx

(iii)
=

∫
exp(−Eθ(x))

Zθ
(−∇θEθ(x))dx

(iv)
=

∫
pθ(x)(−∇θEθ(x))dx

= Ex∼pθ(x) [−∇θEθ(x)] ,

where steps (i) and (ii) are due to the chain rule of gradients, and (iii) and (iv) are from definitions
in Eqs. (47) and (48). Thus, we can obtain an unbiased one-sample Monte Carlo estimate of the
log-likelihood gradient by

∇θ logZθ ≃ −∇θEθ(x̃), (50)

where x̃ ∼ pθ(x), i.e., a random sample from the distribution over x given by the EBM. Thus, we
can approximate the gradient of log-probability in Eq. 49 as:

∇θ log pθ(x) = −∇θEθ(x)−∇θ logZθ ≃ −∇θEθ(x) +∇θEθ(x̃). (51)

Therefore, as long as we can draw random samples from the model, we have access to an unbiased
Monte Carlo estimate of the log-likelihood gradient, allowing us to optimize the parameters with
stochastic gradient ascent.

MCMC Sampling

Some efficient MCMC sampling, such as Langevin MCMC, make use of the fact that the gradient of
the log-probability w.r.t. x (a.k.a., score) is equal to the (negative) gradient of the energy, therefore
it is easy to calculate:

∇x log pθ(x) = −∇xEθ(x)−∇x logZθ︸ ︷︷ ︸
=0

= −∇xEθ(x). (52)

When using Langevin MCMC to sample from pθ(x), we first draw an initial sample x0 from a
simple prior distribution, and then simulate an (overdamped) Langevin diffusion process for K steps
with step size ϵ > 0:

xk+1 ← xk +
ϵ2

2
∇x log pθ(x

k)︸ ︷︷ ︸
=−∇xEθ(x)

+ϵzk, k = 0, 1, · · · ,K − 1. (53)

When ϵ→ 0 and K →∞, xK is guaranteed to distribute as pθ(x) under some regularity conditions.
In practice, we have to use a small finite ϵ, but the discretization error is typically negligible.

16

7. Score-based Models

Score Matching

When f(x) and g(x) are log probability density functions (PDFs) with equal first derivatives, the
normalization requirement (Eq. (47)) implies that

∫
exp(f(x))dx =

∫
exp(g(x))dx = 1, and therefore

f(x) ≡ g(x). Thus, one can learn an EBM by matching the first derivatives of its log-PDF to the first
derivatives of the log-PDF of the data distribution. The first-order gradient function of a log-PDF is
also called the score of that distribution.

Let pdata(x) be the underlying data distribution. The basic Score Matching (SM) objective
minimizes a discrepancy between two distributions called the Fisher divergence:

DF (pdata(x) ∥ pθ(x)) = Epdata(x)

[
1

2
∥∇x log pdata(x)−∇x log pθ(x)∥2

]
. (54)

However, it is generally impractical to calculate ∇x log pdata(x) in Eq. (54). It is shown that under
certain regularity conditions1, the Fisher divergence can be rewritten using integration by parts, with
second derivatives of Eθ(x) replacing the unknown first derivatives of pdata(x):

DF (pdata(x) ∥ pθ(x)) = Epdata(x)

[
1

2

d∑
i=1

(
∂Eθ(x)

∂xi

)2

+
∂2Eθ(x)

(∂xi)2

]
+ constant (55)

where d is the dimensionality of x. The constant does not affect optimization and thus can be dropped
for training. An important downside of the objective Eq. (55) is that, in general, computation of full
second derivatives is quadratic in the dimensionality d, thus does not scale to high dimensionality.
Therefore, the implicit SM formulation of Eq. (55) has only been applied to relatively simple energy
functions where computation of the second derivatives is tractable.

Denoising Score Matching (DSM)

The Score Matching objective in Eq. (55) requires several regularity conditions for log pdata(x),
e.g ., it should be continuously differentiable and finite everywhere. However, these conditions may
not always hold in practice. For example, a distribution of digital images is typically discrete and
bounded.

To alleviate this difficulty, one can add a bit of noise to each datapoint: x̃ = x+ ϵ. As long as the
noise distribution p(ϵ) is smooth, the resulting noisy data distribution q(x̃) =

∫
q(x̃ | x)pdata(x)dx

is also smooth, and thus the Fisher divergence DF (q(x̃) ∥ pθ(x̃)) is a proper objective. In order
to completely avoid both the unknown term pdata(x) and computationally expensive second-order
derivatives, we can use an elegant and scalable objective function (Vincent 2011):

DF (q(x̃) ∥ pθ(x̃)) = Eq(x̃)

[
1

2
∥∇x log q(x̃)−∇x log pθ(x̃)∥22

]
(56)

= Ex∼pdata(x),x̃∼q(x̃|x)

[
1

2
∥∇x log q(x̃|x)−∇x log pθ(x̃)∥22

]
+ constant, (57)

where the expectation is again approximated by the empirical average of samples, thus completely
avoiding both the unknown term pdata(x) and computationally expensive second-order derivatives.
However, DF (q(x̃) ∥ pθ(x̃)) ̸= DF (pdata(x) ∥ pθ(x)) leads to an inconsistent optimization. One way
to attenuate the inconsistency of DSM is to choose q ≈ pdata, i.e., use a small noise perturbation.

1. Aapo Hyvärinen. Estimation of non-normalized statistical models by score matching. Journal of Machine Learning
Research, 6(Apr):695–709, 2005.

17

However, this often significantly increases the variance of objective values and hinders optimization.
As an example, suppose q(x̃ | x) = N (x̃ | x, σ2I) and σ ≈ 0. The corresponding DSM objective is

DF (q(x̃) ∥ pθ(x̃)) = Epdata(x)Ez∼N (0,I)

[
1

2

∥∥∥ z
σ
+∇x log pθ(x+ σz)

∥∥∥2
2

]
≃ 1

2N

N∑
i=1

∥∥∥∥z(i)σ +∇x log pθ(x
(i) + σz(i))

∥∥∥∥2
2

, (58)

When σ → 0, we can leverage Taylor series expansion to rewrite the Monte Carlo estimator in Eq. (58)
to

1

2N

N∑
i=1

[
2

σ
(z(i))T∇x log pθ(x

(i)) +

∥∥z(i)∥∥2
2

σ2

]
+ constant. (59)

When estimating the above expectation with samples, the variances of (z(i))T∇x log pθ(x
(i))/σ and∥∥z(i)∥∥2

2
/σ2 will both grow unbounded as σ → 0 due to division by σ and σ2. This enlarges the

variance of DSM and makes optimization challenging.

Sliced Score Matching (SSM)

Sliced Score Matching is one alternative to DSM that is both consistent and computationally efficient.
Instead of minimizing the Fisher divergence between two vector-valued scores, SSM randomly samples
a projection vector v, takes the inner product between v and the two scores, and then compares the
resulting two scalars. More specifically, Sliced Score Matching minimizes the following divergence
called the sliced Fisher divergence

DSF (pdata(x)||pθ(x)) = Epdata(x)Ep(v)

[
1

2
(vT∇x log pdata(x)− vT∇x log pθ(x))

2

]
,

where p(v) denotes a projection distribution such that Ep(v)[vv
T] is positive definite. Similar to

Fisher divergence, sliced Fisher divergence has an implicit form that does not involve the unknown
∇x log pdata(x), which is given by

DSF (pdata(x)∥pθ(x))

= Epdata(x)Ep(v)

1

2

d∑
i=1

(
∂Eθ(x)

∂xi
vi

)2

+

d∑
i=1

d∑
j=1

∂2Eθ(x)

∂xi∂xj
vivj

+ constant. (60)

All expectations in the above objective can be estimated with empirical means, and again the constant
term can be removed without affecting training. The second term involves second-order derivatives
of Eθ(x), but contrary to SM, it can be computed efficiently with a cost linear in the dimensionality
d. This is because

d∑
i=1

d∑
j=1

∂2Eθ(x)

∂xi∂xj
vivj =

d∑
i=1

∂

∂xi

(d∑
j=1

∂Eθ(x)

∂xj
vj

)
︸ ︷︷ ︸

:=f(x)

vi, (61)

where f(x) is the same for different values of i. Therefore, we only need to compute it once with
O(d) computation, plus another O(d) computation for the outer sum to evaluate Eq. (61), whereas
the original SM objective requires O(d2) computation. For many choices of p(v), part of the SSM

18

a) Estimated scores are only accurate in high-density regions

b) Estimated scores are accurate everywhere for the noise-perturbed data distribution

Figure 9: Illustration of the effect of noise perturbation, which leads to accurate estimation everywhere
due to reduced low data density regions.

objective (Eq. (60)) can be evaluated in closed form, potentially leading to lower variance. For
example, when p(v) = N (0, I), we have

Epdata(x)Ep(v)

[
1

2

d∑
i=1

(
∂Eθ(x)

∂xi
vi

)2
]
= Epdata(x)

[
1

2

d∑
i=1

(
∂Eθ(x)

∂xi

)2
]

and as a result,

DSF (pdata(x)∥pθ(x))

= Epdata(x)Ev∼N (0,I)

1

2

d∑
i=1

(
∂Eθ(x)

∂xi

)2

+

d∑
i=1

d∑
j=1

∂2Eθ(x)

∂xi∂xj
vivj

+ constant. (62)

Multi-scale Noise Perturbation

The naive score-based models generally have 3 pitfalls: 1) Manifold hypothesis: Data score is under-
defined 2) Lagevin dynamic fail to weight different mode correctly. 3) Challenge in low data density
regions: Let us assume trained score-based model sθ(x) ≈ ∇x log p(x), then the Fisher divergence
being minimized can be written as:

Ep(x)

[
∥∇x log p(x)− sθ(x)∥22

]
=

∫
p(x) ∥∇x log p(x)− sθ(x)∥22 dx (63)

19

Since the ℓ2 differences between the true data score function and score-based model are weighted by
p(x), they are largely ignored in low-density regions where p(x)is small, and lead to subpar results as
in Fig. 9.

To solve such a problem, a general idea is to add multi-scale noise perturbation. We first perturb
the data distribution p(x) with each of the Gaussian noise N (0, σ2

i I), i = 1, 2 . . . L to obtain a
noise-perturbed distribution

pσi =

∫
p(y)N (x;y, σ2

i I)dy (64)

Next, we estimate the score function of each noise-perturbed distribution, ∇x log pσi(x) by
training a Noise Conditional Score-based Model sθ(x, i), (also called a Noise Conditional Score
Network, or NCSN, when parameterized with a neural network) with score matching, such that
sθ(x, i) ≈ ∇x log pσi

(x) for all i = 1, 2, . . . , L. The training objective for sθ(x, i) is a weighted sum
of Fisher divergences for all noise scales:

L∑
i=1

λ(i)Epσi
(x)

[
∥∇x log pσi

(x)− sθ(x, i)∥22
]
, (65)

where λ(i) is a positive weighting function, often chosen to be λ(i) = σ2
i . After training our noise-

conditional score-based model sθ(x, i), we can produce samples from it by running Langevin dynamics
for i = L,L − 1, . . . , 1, which is called annealed Langevin dynamics since noise scale σi decreases
gradually over time.

Score-based Models with Stochastic Differential Equations (SDEs)

Perturbing data with an SDE. When the number of noise scales approaches infinity, we essentially
perturb the data distribution with continuously growing levels of noise. In this case, the noise
perturbation procedure is a continuous-time stochastic process. Stochastic processes are solutions of
stochastic differential equations (SDEs). In general, an SDE possesses the following form:

dx = f(x, t)dt+ g(t)dω, (66)

where f(·, t) is drift coefficient. g(t) is the diffusion coefficient. w denotes a standard Brownian
motion, and dw can be viewed as infinitesimal white noise.

The solution of a stochastic differential equation is a continuous collection of random variables
{x(t)}t∈[0,T]. Let pt(x) denote the (marginal) probability density function of x(t). Here t ∈ [0, T]
is analogous to i = 1, 2, . . . L when we had a finite number of noise scales, and pt(x) analogous to
pσi(x). Note that pT (x) is analogous to pσL

(x) in the case of finite noise scales, which corresponds
to applying the largest noise perturbation σL to the data.
Reversing the SDE for sample generation. Recall that with a finite number of noise scales, we
can generate samples by reversing the perturbation process with annealed Langevin dynamics, i.e.,
sequentially sampling from each noise-perturbed distribution using Langevin dynamics. For infinite
noise scales, we can analogously reverse the perturbation process for sample generation by using the
reverse SDE:

dx =
[
f(x, t)− g2(t)∇x log pt(x)

]
dt+ g(t)dω, (67)

Here dt represents a negative infinitesimal time step since the SDE needs to be solved backward
in time (T → 0). In order to compute the reverse SDE, we need to estimate ∇x log pt(x), which is
exactly the score function of pt(x).

20

Estimating the reverse SDE with score-based models and score matching . Solving the
reverse SDE requires us to know the score function ∇x log pt(x). In order to estimate ∇x log pt(x),
we train a Time-Dependent Score-Based Model sθ(x, t) such that sθ(x, t) ≈ ∇x log pt(x). This is
analogous to the noise-conditional score-based model sθ(x, i) used for finite noise scales, trained such
that sθ(x, i) ≈ ∇x log pσi

(x). The training objective is a continuous weighted combination of Fisher
divergences, given by

Et∈U(0,T)Ept(x)

[
λ(t) ∥∇x log pt(x)− sθ(x, t)∥22

]
, (68)

where U(0, T) denotes a uniform distribution over the time interval [0, T], and λ is a positive weighting
function. As before, the weighted combination of Fisher divergences can be efficiently optimized with
score matching methods, such as DSM, and SSM.

21

	Introduction
	Autoregressive Models
	Variational Autoencoder
	Normalizing Flow Models
	Generative Adversarial Network (GAN)
	Energy-based Models (EBMs)
	Score-based Models

