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Figure 1. Overview. Given a set of ordered or unordered image collections without prior knowledge of camera parameters, the proposed
Spann3R can incrementally reconstruct the 3D geometry by directly regressing the pointmap of each image in a common coordinate
system. Spann3R does not require any optimization-based alignment during inference, i.e., the 3D reconstruction of each image can be
solved by a simple forward pass with a transformer-based architecture, thus enabling online reconstruction in real-time. The qualitative
examples shown are reconstructed from some self-captured images to illustrate the generalization ability of Spann3R.

Abstract

We present Spann3R, a novel approach for dense
3D reconstruction from ordered or unordered image col-
lections. Built on the DUSt3R paradigm, Spann3R
uses a transformer-based architecture to directly regress
pointmaps from images without any prior knowledge of
the scene or camera parameters. Unlike DUSt3R, which
predicts per image-pair pointmaps each expressed in its
local coordinate frame, Spann3R can predict per-image
pointmaps expressed in a global coordinate system, thus
eliminating the need for optimization-based global align-
ment. The key idea of Spann3R is to manage an external
spatial memory that learns to keep track of all previous rel-
evant 3D information. Spann3R then queries this spatial
memory to predict the 3D structure of the next frame in a
global coordinate system. Taking advantage of DUSt3R’s
pre-trained weights, and further fine-tuning on a subset
of datasets, Spann3R shows competitive performance and
generalization ability on various unseen datasets and can
process ordered image collections in real-time. Project
page: https://hengyiwang.github.io/projects/spanner

1. Introduction

Reconstructing dense geometry from images is one of the
fundamental problems in computer vision that has been re-
searched for decades [31]. This task offers numerous ap-
plications in autonomous driving, virtual reality, robotics,
medical imaging, and more. The inherent ambiguities
in interpreting 3D structures have led traditional solutions
evolve into various sub-fields, including keypoint detec-
tion and matching [10, 46, 47, 60], Structure-from-Motion
(SfM) [2, 19, 64, 68, 75, 84, 85], Bundle Adjustment
(BA) [3, 77, 86], Multi-View Stereo (MVS) [29, 30, 65],
Simultaneous Localization and Mapping (SLAM) [21, 41,
54], etc. Each of these sub-fields addresses different aspects
of the problem using a variety of handcrafted heuristics, re-
quiring substantial engineering effort to integrate them into
a complete dense reconstruction pipeline [64, 65].

Recent attention has shifted towards replacing hand-
crafted features with learned structural priors from large-
scale datasets [12, 22, 32, 61, 73, 79, 89, 94]. These modern
approaches typically integrate learning-based models into
each step of the traditional pipeline. Thus, the sequential
structure of traditional pipelines, involving matching, trian-
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Figure 2. Motivation. DUSt3R [81] directly regresses the pointmap of each image pair in a local coordinate system. In contrast, Spann3R
predicts a global pointmap in a common coordinate system via a spatial memory that stores all previous predictions. Thus, our method can
enable online incremental reconstruction without the need to build a dense pairwise graph and a final optimization-based alignment.

gulation, sparse reconstruction, camera parameter estima-
tion, and dense reconstruction is mostly maintained. While
these methods have made significant progress with learned
priors, the inherent limitations of this complex pipeline per-
sist, making it sensitive to noise at each step and still de-
manding substantial engineering effort for integration.

To address these issues, DUSt3R [81] introduces a radi-
cal and novel paradigm shift that was often considered im-
possible - directly regressing the pointmap, a common rep-
resentation in visual localization [13–15, 59], from a pair of
images without prior scene information. Since the pointmap
is expressed in the local coordinate system of the image
pair, a global alignment is introduced for the reconstruction
of more than just an image pair. This involves per-scene
optimization to align the predicted pointmap with a dense
pairwise graph. Trained on millions of image pairs with
ground-truth annotations for depth and camera parameters,
DUSt3R [81] shows unprecedented performance and gener-
alization across various real-world scenarios with different
camera sensors. However, operating on a pair of images and
the need for per-scene optimization-based global alignment
limit its ability for real-time incremental reconstruction and
scalability to many images.

In this paper, we present Spann3R, a framework that
adopts a Spatial Memory for 3D Reconstruction. Building
on the paradigm of DUSt3R [81], we take a step further
by eliminating the need for per-scene optimization-based
alignment (See Fig. 2). That being said, our model enables
incremental reconstruction by predicting the pointmap of
each image in a common coordinate system with a simple
forward pass on our transformer-based architecture. The
key idea is to maintain an external memory that keeps track
of previous states and learns to query all relevant informa-
tion from this memory for predicting the next frame, a con-
cept often referred to as memory networks [51, 72, 83].

We employ a lightweight transformer-based memory en-
coder to encode previous predictions as memory values.
To retrieve information from this memory, we project ge-
ometric features from two decoders into query features
and memory keys using two multilayer perceptron (MLP)
heads. Our model is trained on sequences of five frames
randomly sampled from videos, with a curriculum train-

ing strategy that adjusts the sample window size through-
out the training process. This allows Spann3R to learn
both short and long-term dependency across frames. Dur-
ing inference, we apply a memory management strategy
inspired by X-Mem [16], which mimics human memory
model [5], to maintain a compact memory representation.
Compared to DUSt3R [81], our method aligns point on-the-
fly (like a spanner) purely based on neural network (NN),
enables real-time online incremental reconstruction at over
50 frames per second (fps) without test-time optimization.
Experiments on various unseen datasets show competitive
dense reconstruction quality and generalization ability.

2. Related Works

Classic 3D Reconstruction. Recovering 3d structures
from visual signals has been investigated for decades [31].
Structure-from-motion (SfM) [2, 19, 56, 64, 68, 75, 84, 85]
is usually considered the de-facto standard for obtaining
sparse geometry and accurate camera poses. Starting from
feature correspondence search ( keypoint detection and de-
scription [10, 46, 47, 60], matching [2, 85], and geomet-
ric verification [64]), SfM selects an image pair for ini-
tialization, followed by image registration, triangulation,
and bundle adjustment [3, 77, 86]. Finally, multi-view
stereo [29, 30, 65] is used to obtain dense geometry. These
approaches usually require lengthy offline optimization. In
contrast, visual SLAM focuses on obtaining geometry on-
line in real-time. Given the calibrated cameras, visual
SLAM can perform sparse [21, 28, 41, 52] or dense [27, 54]
reconstruction via minimizing either reprojection error (in-
direct) [21, 41, 52] or photometric error (direct) [27, 28, 54].
To obtain accurate reconstruction, these methods either re-
quire a depth/LiDAR sensor [53] or careful initialization
and various assumptions about the camera motion and scene
appearance [21, 52, 54].
Learning-based 3D Reconstruction. Built upon the
success of the classic reconstruction pipeline, recent ap-
proaches usually leverage learning-based techniques to im-
prove each sub-task, i.e., feature extraction [22, 93], match-
ing [45, 61], BA [44], monocular depth estimation [23,
38, 94], multi-view depth estimation [26, 63, 89], opti-
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Figure 3. Overview of Spann3R. Our model contains a ViT [25] encoder and two intertwined decoders as in DUSt3R [81]. The target
decoder here is used to obtain query features from images for memory query while the reference decoder is used to predict based on the
memory readout using the geometric feature and our memory features. A lightweight memory encoder is used to encode the previously
predicted pointmap together with geometric features into our memory key and value features. Dash means operation in the next time step.

cal flow [76], point tracking [24, 37, 87], etc. However,
those classic pipelines usually involve a sequential struc-
ture vulnerable to noise in each sub-task. To avoid this,
DUSt3R [81] unifies all sub-tasks by directly learning to
map an image pair to 3D, followed by an optimization-
based global alignment to bring all image pairs into a com-
mon coordinate system. In this work, we take a step further
to replace the optimization step with an end-to-end learn-
ing framework, enabling online incremental reconstruction
in real time.

Neural Rendering for 3D Reconstruction. The recent
progress in differentiable rendering, i.e., NeRF [50] and
its follow-up works [7, 8, 33, 35, 36, 40, 80, 91] en-
ables high-fidelity scene reconstruction using images with
known camera parameters obtained via SfM [64]. Several
other works leverage neural rendering for SfM [11] and
SLAM [42, 71, 78, 95]. However, despite the significant
progress in accelerating neural rendering, these methods
still require lengthy optimization time. For instance, Gaus-
sian splatting [40] and its variants in SLAM [34, 39, 48] can
achieve over 100fps rendering. However, they still require
minutes of test-time optimization for scene reconstruction.

Memory Networks. The concept of the memory net-
works was originally introduced in the context of question-
answering [51, 72, 83] in natural language processing,
where they manage an external memory for reasoning over
long-term dependencies. This architecture is naturally suit-
able for processing sequential data and can thus be adopted
in various vision tasks, such as video object segmentation
(VOS) [16–18, 55], video understanding [69], etc. Our
work is greatly inspired by a series of works in VOS, where
STM [55] firstly employs the memory networks for VOS,
and XMem [16] further extends this idea to long video se-
quence via a memory consolidation strategy that mimics the
human memory model [5].

3. Method
Fig. 3 shows an overview of Spann3R. We aim to repurpose
DUSt3R [81] into an end-to-end incremental reconstruction
framework that directly regresses the pointmap in a com-
mon coordinate system. Specifically, given a sequence of
images {It}Nt=1, our goal is to train a network F that maps
each It to its corresponding pointmap Xt, expressed in the
coordinate system of the initial frame. To enable this, we
introduce a spatial memory that encodes the previous pre-
dictions for reasoning next frame. We will describe our net-
work architecture (Sec. 3.1), spatial memory (Sec. 3.2), and
the training and inference of our model (Sec. 3.3) next.

3.1. Network architecture

Feature encoding. In each forward pass, our model takes a
frame It and a previous query fQ

t−1 as input. A ViT [25] is
used to encode the frame It into visual feature f I

t :

f I
t = EncoderI(It). (1)

The query features fQ
t−1 is used to retrieve features in our

memory bank to output the fused feature fG
t−1:

fG
t−1 = Memory read(fQ

t−1, f
K , fV ), (2)

where fK and fV are memory key and value features.
Feature decoding. The fused feature fG

t−1 and the visual
feature f I

t are fed into two intertwined decoders that process
them jointly via cross-attention. This can enable the model
to reason the spatial relationship between two features:

fH′

t , fH
t−1 = Decoder(f I

t , f
G
t−1). (3)

The feature fH′

t decoded by the target decoder is fed into an
MLP head to generate the query feature for the next step:

fQ
t = headtargetquery (f

H′

t , f I
t ). (4)
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The feature fH
t−1 decoded by the reference decoder is fed

into an MLP head to generate the pointmap and confidence:

Xt−1, Ct−1 = headrefout(f
H
t−1). (5)

Note that we also generate a pointmap and confidence from
fH′

t only for supervision.
Memory encoding. The feature and predicted pointmap of
the reference decoder are used for encoding the memory key
and value features:

fK
t−1 = headrefkey(f

H
t−1, f

I
t−1), (6)

fV
t−1 = EncoderV (Xt−1) + fK

t−1. (7)

Since memory key and value features have information
from both geometric features and visual features, it enables
memory readout based on both appearance and distance.
Discussion. Compared to DUSt3R [81], our architecture
has one more lightweight memory encoder and two MLP
heads for encoding the query, memory key, and memory
value features. For decoders, DUSt3R [81] contains two
decoders - a reference decoder that reconstructs the first im-
age in the canonical coordinate system, and a target decoder
that reconstructs the second image in the coordinate system
of the first image. In contrast, we repurpose the two de-
coders in DUSt3R [81]. The target decoder is mainly used
to produce features for querying the memory while the ref-
erence decoder takes the fused features from memory for
reconstruction. In terms of the initialization, we directly
use two visual features.

3.2. Spatial memory

Fig. 4 shows an overview of the spatial memory that con-
sists of a dense working memory, a sparse long-term mem-
ory, and a memory query mechanism for extracting features
from the memory, which we will describe next.
Memory query. The spatial memory stores all key fK ∈
RBs×(T ·P )×C and value fV ∈ RBs×(T ·P )×C features. To
compute fused feature fG

t−1, we apply a cross attention us-
ing query feature fQ

t−1 ∈ RBs×P×C for memory reading:

fG
t−1 = At−1f

V + fQ
t−1, (8)

where At−1 ∈ RBs×P×(T ·P ) is the attention map:

At−1 = Softmax(
fQ
t−1(f

K)⊤
√
C

). (9)

This attention map contains a dense attention weight for
each token in the current query with respect to all tokens in
memory keys (See Fig. 8). We apply an attention dropout
of 0.15 during training to encourage the model to reason the
geometry from a subset of the memory values.

Figure 4. Overview of our spatial memory. Our memory con-
tains a dense working memory chunk and a sparse long-term mem-
ory chunk. For each memory query, all tokens in both long-term
memory and working memory will be used for generating atten-
tion weight and the fused feature. We also visualize the cumulative
histogram of the values in attention weight.

In practice, we observe that at inference, most of the at-
tention weights are relatively small, as illustrated in the cu-
mulative histogram of Fig. 4. However, despite their small
weights, the corresponding patches can be significantly dis-
tant from the query patches or even outliers. In the end, their
memory values might still have a non-negligible impact on
the fused features. To mitigate the impact of these outlier
features, we apply a hard clipping threshold of 5 × 10−4

and re-normalize the attention weights.
Working memory. The working memory consists of dense
memory features from the most recent 5 frames. For each
incoming memory feature, we first correlate its key feature
with each key feature in working memory. We only insert
new key and value features into working memory if their
maximum similarity is less than 0.95. Once the working
memory is full, the oldest memory features are drained into
long-term memory.
Long-term memory. During the inference, long-term
memory features accumulate over time, which can increase
GPU memory usage and slow down speed. Inspired by
XMem [16], which mimics human memory models [5] via
memory consolidation, we design a similar strategy to spar-
sify the long-term memory. Specifically, for each token in
long-term memory keys, we keep track of its accumulated
attention weights (i.e., A in Eq. 9). Once the long-term
memory reaches a predefined threshold, we perform mem-
ory sparsification by retaining only the top-k tokens.

3.3. Training and Inference

Objective function. Following Dust3R [81], we train our
model by a simple confidence-aware regression loss. We
additionally include a scale loss to encourage the average
distance of the predicted point cloud to become smaller than
the ground truth. The overall loss is

L = Lconf + Lscale. (10)
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Figure 5. Qualitative examples. We show qualitative examples of DUSt3R† [81], FrozenRecon [88] for a comprehensive comparison.
Our method shows competitive results in comparison to other offline methods. However, since our method runs online without any
optimization-based alignment, it can potentially lead to drift issues in some challenging scenarios (See Office-09).

Note that to compute Lconf , both the predicted and ground
truth pointmaps are normalized by their average distance.
We tried to fix this scale based on the first two-view pre-
diction during initial experiments, but it does not work well
due to the presence of outliers and the unbounded nature of
the outdoor scene, Co3D [58], for instance.

Curriculum training. Due to GPU memory constraints,
we train our model by randomly sampling 5 frames per
video sequence. Thus, the memory bank contains only a
4-frame memory at maximum during training. To ensure
the model adapts to diverse camera motions and long-term
feature matching, we gradually increase the sample window
size throughout the training. For the last 25% epochs, we
gradually decrease the window size to ensure the training
frame interval aligns with the inference frame interval.

Inference. Our model naturally fits sequential data, i.e.
video sequence. For unordered image collections, we can
build a dense pairwise graph as in DUSt3R [81]. The pair
with the highest confidence will be used for initialization.
Then, we can either build a minimum spanning tree based
on pairwise confidence to determine the order or directly
feed the remaining images into our model to identify the
next best image based on the predicted confidence. Note
that the confidence map in DUSt3R [81] involves an ex-
ponential function, which tends to overweight patches with
higher confidence. In our case, we find that map it back to a
sigmoid function for view selection can improve the robust-
ness of the reconstruction.

4. Experiments

4.1. Setup

Datasets. DUSt3R [81] adopts a mixture of 8 datasets:
Habitat [62], MegaDepth [43], ARKitScenes [9], Static
Scenes 3D [49], BlendedMVS [90], ScanNet++ [92],
Co3D-v2 [58], and Waymo [74]. We choose a subset
of datasets: Habitat [62], ScanNet [20], ScanNet++ [92],
ARKitScenes [9], BlendedMVS [90], Co3D-v2 [58] for
training our model. Note that for Habitat [62], we only use
a small subset of the scenes to synthesize data for train-
ing. To demonstrate the generalization ability of our model,
we quantitatively evaluate our model on 3 unseen datasets:
7Scenes [67], NRGBD [6], and DTU [1].
Baselines. We consider DUSt3R [81] as our primary base-
line. Additionally, we compare with FrozenRecon [88] on
indoor scene reconstruction. FrozenRecon is a test-time
optimization method that jointly optimizes camera parame-
ters along with the scale and shift factor of the depth map
from the off-the-shelf monocular depth estimation model.
All evaluations are performed on a single NVIDIA 4090
GPU with 24GB of memory. DUSt3R† denotes running
DUSt3R’s final weight with 224 × 224 images as running
full reconstruction on 512× 384 images cannot fit in 24GB
memory. We include both results of DUSt3R on few-view
reconstruction for a comprehensive comparison.
Metrics. We use accuracy, completion and normal consis-
tency as in prior works [6, 78, 95]. The predicted dense
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Method Optim. Onl.
7 scenes NRGBD

FPS
Acc↓ Comp↓ NC↑ Acc↓ Comp↓ NC↑

Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med.

F-Recon [88] ✓ 0.1243 0.0762 0.0554 0.0231 0.6189 0.6885 0.2855 0.2059 0.1505 0.0631 0.6547 0.7577 <0.1
Dust3R† [81] ✓ 0.0286 0.0123 0.0280 0.0091 0.6681 0.7683 0.0544 0.0251 0.0315 0.0103 0.8024 0.9529 0.78

Ours ✓ 0.0342 0.0148 0.0241 0.0085 0.6635 0.7625 0.0691 0.0315 0.0291 0.0110 0.7775 0.9371 65.49

Dust3R [81] (FV) ✓ 0.0188 0.0087 0.0234 0.0096 0.7851 0.8985 0.0392 0.0167 0.0342 0.0121 0.8765 0.9757 0.48
Dust3R† [81] (FV) ✓ 0.0279 0.0133 0.0276 0.0108 0.7630 0.8841 0.0591 0.0266 0.0409 0.0136 0.8305 0.9556 1.42

Ours⋆ (FV) 0.0233 0.0108 0.0246 0.0104 0.7791 0.9003 0.0587 0.0239 0.0390 0.0132 0.8384 0.9616 5.83
Ours (FV) ✓ 0.0239 0.0111 0.0247 0.0103 0.7768 0.8985 0.0611 0.0254 0.0392 0.0135 0.8330 0.9593 72.04

Table 1. Quantitative results on 7Scenes [67] and NRGBD [6] datasets. DUSt3R† indicates using DUSt3R’s final weights on 224×224
images, same as our input resolution, to fit within 24GB GPU memory. For few-view (FV) reconstruction, we use the 8-frame pairs [26]
as in SimpleRecon [63]. Note that evaluating DUSt3R at the original resolution may benefit from increased visual overlapping.

Method Opt. Onl. Acc↓ Comp↓ NC↑

Mean Med. Mean Med. Mean Med.

Dust3R [81] ✓ 2.114 1.159 2.033 0.914 0.749 0.849
Dust3R† [81] ✓ 2.296 1.297 2.158 1.002 0.747 0.848

Ours⋆ 2.902 1.273 2.120 0.937 0.732 0.836
Ours ✓ 4.785 2.268 2.743 1.295 0.721 0.823

Dust3R [81] (FV) ✓ 2.128 1.241 2.464 1.228 0.797 0.889
Dust3R† [81] (FV) ✓ 2.511 1.484 2.661 1.230 0.788 0.883

Ours⋆ (FV) 3.055 1.600 2.878 1.345 0.781 0.878
Ours (FV) ✓ 3.375 1.782 2.870 1.338 0.777 0.875

Table 2. Quantitative results on DTU [1] dataset. For few-view
(FV) reconstruction, we use pairs provided in MVSNet [89].

pointmap is directly compared with the back-projected per-
point depth, excluding invalid and background points if ap-
plicable. Since the reconstruction is up to an unknown
scale, we align the reconstruction following DUSt3R [81].
For DUSt3R† and our method, 224 × 224 inputs are gen-
erated using resizing and center cropping. Evaluation on
DUSt3R and FrozenRecon with full-resolution images is
restricted to the same 224 × 224 region for fairness. How-
ever, evaluating on full-resolution (4:3) may benefit from
increased visual overlapping compared to 224× 224 (1:1).
Implementation details. We initialize part of our model
with pre-trained weights from DUSt3R [81, 82] with ViT-
large [25] encoder, ViT-base decoders, and a DPT head [57].
For the memory encoder, we employ a light-weight ViT
containing 6 self-attention blocks with the embedding di-
mension of 1024. Due to the computational constraint, we
only train our model on 224 × 224 images for 120 epochs
using AdamW optimizer with a learning rate of 5e− 5 and
β = (0.9, 0.95). The training takes around 10 days on 8
V100 GPUs, each with 32GB memory. The batch size is 2
per GPU, which leads to the effective batch size of 16.

4.2. Evaluation

Scene-level reconstruction. We compare the reconstruc-
tion quality with FrozenRecon [88] and DUSt3R [81], both
of which are offline dense reconstruction methods that in-

Method Acc↓ Comp↓ NC↑

Mean Med. Mean Med. Mean Med.

w/o lm 0.2554 0.1419 0.1470 0.0872 0.5964 0.6523
w/o clip 0.0349 0.0161 0.0249 0.0090 0.6627 0.7614

Full 0.0342 0.0148 0.0241 0.0085 0.6635 0.7625

Table 3. Ablation studies on spatial memory. w/o lm: use work-
ing memory only. w/o clipping the attention weight.

volve optimization-based alignment. As shown in Tab. 1,
our model shows competitive online reconstruction qual-
ity compared to the other two offline methods while being
significantly faster. This is because our model is able to
predict the pointmap in a common coordinate system with-
out the need for test-time optimization. For few-view re-
construction, our model achieves performance on par with
DUSt3R†. However, since our model is trained on 224×224
images, it shows a performance gap compared to DUSt3R
which uses 512 × 384 images for reconstruction, espe-
cially on the NRGBD [6] dataset, which contains many thin
structures. Fig. 5 shows three qualitative examples on the
7scenes [67] dataset, where our model demonstrates com-
parable results to DUSt3R†. However, due to the absence
of bundle adjustment, our model may drift. This is shown
in Office-09, where a strong specular reflection in the corner
causes inaccurate prediction, eventually leading to drift.
Object-level reconstruction. In Tab. 2, we evaluate the
object-level reconstruction on DTU [1] dataset. DTU con-
tains a challenging camera trajectory, starting from a top-
down view, which makes online reconstruction particularly
difficult. For offline reconstruction, our method achieves
performance on par with DUSt3R† in terms of median Acc,
Comp, and NC. It is important to note that DTU contains a
black background with many thin structures (see Fig. 8). As
a result, our model may produce floaters around the edges,
which receive significant penalties in terms of mean Acc.
Run-time and memory footprint. Our default setting of
online reconstruction can run around 65fps with 11GB GPU
memory on a single 4090 GPU.
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Figure 6. Online reconstruction. We visualize the process of our online reconstruction in two indoor scenes. In both cases, our model
shows its understanding of the regularity of the indoor scene, i.e., the Manhattan World Assumption. Our model can infer the geometry of
the textureless wall based on those learned regularity. However, during loop closing, our model may not fill the geometry accurately due
to the accumulated errors and outliers (noisy points around the window in the second scene.)

Figure 7. Ablation study on memory size. We plot Chamfer
distance against the max number of tokens in long-term memory.

4.3. Analysis

Effect of the memory bank. We conduct an ablation study
on our memory bank in Tab. 3. Without long-term memory
(w/o lm), the model tends to drift quickly when relying only
on the working memory, which consists of the most recent 5
frames. Additionally, without clipping attention weight, the
performance of our model can degrade in certain scenes.
This occurs because despite most attention weight values
being small (See Fig. 4), the corresponding memory val-
ues can still differ significantly, especially when the geom-
etry prediction contains outliers. Filtering out those small
attention weights can improve the robustness of our recon-
struction pipeline in various challenging scenarios. Fig. 7
shows the reconstruction quality with respect to different
long-term memory sizes. In practice, we find that 4000
memory tokens are sufficient for most scenes.
Online reconstruction. We visualize the online reconstruc-
tion of two indoor scenes in Fig. 6. From the results, we can
see our method can achieve the online reconstruction of the
indoor scene even in some challenging scenarios (texture-
less walls). This shows a certain level of understanding of

Figure 8. Visualization of the attention map. We visualize the
attention weight of selected patches with respect to all tokens in
the memory. The results show robustness toward visually similar
patches (e.g., right eye/feet).

the regularity presented in indoor scenes, i.e. Manhattan
World Assumption. However, one limitation is that due to
the accumulated errors and outliers, our model may not fill
the geometry correctly when the loop closes (See last col-
umn of Fig. 6).
Visualization of affinity map. In Fig. 8, we visualize the
attention weights corresponding to different patches in the
query frame throughout the memory frames. To read out
from memory, we project visual features and geometry fea-
tures from two decoders into query features and memory
key features as in Eq. 4 and Eq. 7. This can help to distin-
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Figure 9. Qualitative examples in various real-world datasets. We visualize several reconstruction results of Spann3R on Map-free
Reloc [4], ETH3D [66], MipNeRF-360 [7], NeRF [50] and TUM-RGBD [70] datasets to demonstrate the generalization ability of our
methods on different type of scenes, including indoor, outdoor, object-level, scene-level reconstruction.

guish the parts with similar appearance and semantics but
in different locations (e.g. the right eye and foot of the toy).
Generalization to other unseen datasets. We demonstrate
the generalization capability of Spann3R through qualita-
tive examples of reconstructions shown in Fig. 9. These
examples include results from the Map-free Reloc [4],
ETH3D [66], MipNeRF-360 [7], NeRF [50] and TUM-
RGBD [70] datasets. The results illustrate that Spann3R
can generalize to different types of scenes and has a certain
level of robustness across various challenging scenarios.

4.4. Discussion

Despite showing competitive results across various datasets,
our method still has some inherent limitations. We will de-
scribe several limitations and potential directions next.
Large-scale scene reconstruction. Our model can deal
with large-scale object-centric scenes fairly well. However,
in cases where the camera continuously moves forward or
reconstructs large multi-room scenes, our model might fail.
This limitation arises due to the limited memory size dur-
ing training. Since our training process assumes the cam-
era pose of the first frame is the identity, training on just 5
frames typically spans only a limited spatial region. To ad-
dress this issue, one approach could be to restart our model
every few frames and then align the different fragments us-
ing PnP-RANSAC. Alternatively, a more scalable sampling
strategy in training or a more structured memory system at
inference is needed to overcome this challenge.
Bundle adjustment. For an incremental reconstruction
pipeline, bundle adjustment is usually of great importance
for mitigating error accumulation. In the case of Spann3R,
the question would be: Can we learn to update and fuse
our memory when incorporating new observations? Alter-
natively, since the concept of Spann3R is to predict the next
frame based on previous predictions, we could potentially

integrate traditional bundle adjustment techniques to correct
the geometry. The model could then encode this corrected
geometry into the spatial memory, leading to more accurate
predictions in subsequent frames.
Training data. Due to the constraint of the computational
resources, we only train our model across 4 datasets using
five 224×224 images sampled from the entire sequence. We
expect training on the entire datasets of DUSt3R [81], either
with more than five images or at a higher 512 resolution,
could further improve the accuracy. Moreover, the current
model relies on a substantial amount of posed RGB-D data.
It is worth exploring how to effectively learn data-driven
prior from casual videos using self-supervised training.

5. Conclusion
We have presented Spann3R, a model capable of achiev-
ing incremental reconstruction from RGB images with-
out requiring prior knowledge of the camera parameters.
By introducing the concept of spatial memory, which en-
codes previous states for next-frame prediction, Spann3R
reconstructs scenes through a simple forward pass with
a transformer-based architecture, eliminating the need for
test-time optimization. This enables online reconstruc-
tion in real time. Trained on various large-scale datasets,
Spann3R demonstrates competitive reconstruction quality
and generalization ability across various scenarios. Future
work includes extending our method to handle large-scale
scenes, incorporating bundle adjustment techniques, and
exploring self-supervised training on casual videos.
Acknowledgements. The research presented here has been
supported by a sponsored research award from Cisco Re-
search and the UCL Centre for Doctoral Training in Foun-
dational AI under UKRI grant number EP/S021566/1. This
project made use of time on Tier 2 HPC facility JADE2,
funded by EPSRC (EP/T022205/1).
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6. Additional details
Training loss. The confidence loss as in DUSt3R [81] is:

Lconf =
∑
t

∑
i∈V

Ci
tLreg(i)− α logCi

t , (11)

where V is the set of all valid pixels. The confidence Ci
t

is an exponential function of the raw output of the network
Ĉi

t :
Ci

t = 1 + exp(Ĉi
t) (12)

In confidence loss Lconf , α controls the total confidence
score the model needs to distribute to the loss of each pixel.
Since the regions with larger depths usually have a larger
loss, the model assigns more confidence weight to regions
with smaller depths. This loss shares a similar spirit to other
depth representations, e.g., inverse depth, which gives more
weight to pixels with smaller depth. However, instead of
explicitly encoding the depth, this confidence loss let the
model learn the weight function along the training. Our
scale loss is defined as:

Lscale = max(0, X̄ − X̄gt), (13)

where X̄ and X̄gt are the average distance of all predicted
and ground-truth points to the origin. The scale loss encour-
ages the predicted scale to be smaller than the GT scale to
prevent the model from learning trivial solutions.

To tune the hyper-parameter α, we find that the best way
is to ensure the overall training loss becomes smaller than 0
after 30% of epochs. A typical sign of choosing the α that
is not big enough is the Lscale becomes quite large along the
training. This indicates that some pixels with large depths
make the model predict the trivial solutions. We find that
α ≥ 0.4 achieves the best results in our case.
Curriculum training. Given the minimal and maximum
sampling interval Tmin and Tmax between adjacent frames,
our curriculum sampling can be written as:

T = Tmin + ηa(Tmax − Tmin), (14)

where ηa is the active ratio of the training ratio η:

ηa =

{
min (1, 2η) if η < 0.75

max (0.5, 4− 4η) otherwise
(15)

7. Additional analysis
Ablation study on view selection. Since the confidence
function in Eq. 12 tends to over-weight patches with higher

Method Acc↓ Comp↓ NC↑

Mean Med. Mean Med. Mean Med.

Ours⋆ (exp) 3.099 1.361 2.247 0.993 0.731 0.835
Ours⋆ 2.902 1.273 2.120 0.937 0.732 0.836

Table 4. Ablation study on view selection. Ours⋆ (exp): expo-
nential confidence function for view selection as in DUSt3R [81].
Ours⋆:sigmoid confidence function for view selection.

datasets Method Acc↓ Comp↓ NC↑

Mean Med. Mean Med. Mean Med.

7scenes
Dust3R† 0.0286 0.0123 0.0280 0.0091 0.6681 0.7683
Dust3Rours 0.0278 0.0117 0.0247 0.0101 0.6775 0.7842
Ours 0.0342 0.0148 0.0241 0.0085 0.6635 0.7625

7scenes
(FV)

Dust3R† 0.0279 0.0133 0.0276 0.0108 0.7630 0.8841
Dust3Rours 0.0242 0.0114 0.0249 0.0106 0.7785 0.9003
Ours 0.0239 0.0111 0.0247 0.0103 0.7768 0.8985

NRGBD
Dust3R† 0.0544 0.0251 0.0315 0.0103 0.8024 0.9529
Dust3Rours 0.0644 0.0246 0.0396 0.0110 0.8041 0.9623
Ours 0.0691 0.0315 0.0291 0.0110 0.7775 0.9371

NRGBD
(FV)

Dust3R† 0.0591 0.0266 0.0409 0.0136 0.8305 0.9556
Dust3Rours 0.0606 0.0252 0.0407 0.0143 0.8439 0.9630
Ours 0.0611 0.0254 0.0392 0.0135 0.8330 0.9593

Table 5. Ablation study on Dust3Rours on indoor scene.

datasets Method Acc↓ Comp↓ NC↑

Mean Med. Mean Med. Mean Med.

DTU
Dust3R† 2.296 1.297 2.158 1.002 0.747 0.848
Dust3Rours 3.386 1.469 2.228 1.017 0.734 0.837
Ours⋆ 2.902 1.273 2.120 0.937 0.732 0.836

DTU
(FV)

Dust3R† 2.511 1.484 2.661 1.230 0.788 0.883
Dust3Rours 3.875 1.869 2.916 1.438 0.777 0.874
Ours⋆ (FV) 3.055 1.600 2.878 1.345 0.781 0.878

Table 6. Ablation study on Dust3Rours on DTU.

confidence, we instead use the sigmoid function for view se-
lection of the offline reconstruction. The overall confidence
function becomes:

C =
C1 − 1

C1
+

C2 − 1

C2
. (16)

The difference in performance is illustrated in Tab. 4.
Ablation study on DUSt3R in Spann3R. Since our model
inherits from the network architecture of DUSt3R [81], we
can directly compare the performance of the ViT encoder
with two decoders in our model, denoted as DUSt3Rours,
with the original DUSt3R. As shown in Tab. 5 and Tab. 6,
even though we re-purpose the two decoders, DUSt3Rours

still shows on-par median accuracy and completion and
consistent better normal consistency compared to DUSt3R†
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Scene Method Acc↓ Comp↓ NC↑

Mean Med. Mean Med. Mean Med.

chess03 Dust3R† 0.0270 0.0093 0.0180 0.0055 0.6351 0.7144
Ours 0.0237 0.0072 0.0193 0.0052 0.6505 0.7389

chess05 Dust3R† 0.0335 0.0141 0.0178 0.0080 0.6352 0.7156
Ours 0.0229 0.0073 0.0142 0.0058 0.6413 0.7249

pumpkin01 Dust3R† 0.0337 0.0133 0.0292 0.0123 0.7302 0.8509
Ours 0.0271 0.0131 0.0205 0.0087 0.7068 0.8258

pumpkin07 Dust3R† 0.0193 0.0055 0.0132 0.0052 0.6793 0.7860
Ours 0.0178 0.0062 0.0164 0.0060 0.6832 0.7929

stairs01 Dust3R† 0.0636 0.0357 0.1023 0.0193 0.6475 0.7476
Ours 0.0739 0.0421 0.0672 0.0151 0.6507 0.7496

stairs04 Dust3R† 0.0475 0.0212 0.0900 0.0174 0.6446 0.7335
Ours 0.0390 0.0160 0.0357 0.0069 0.6588 0.7589

fire03 Dust3R† 0.0112 0.0044 0.0096 0.0042 0.6539 0.7474
Ours 0.0089 0.0042 0.0086 0.0039 0.6523 0.7454

fire04 Dust3R† 0.0104 0.0037 0.0111 0.0037 0.6515 0.7408
Ours 0.0086 0.0034 0.0098 0.0036 0.6556 0.7472

office02 Dust3R† 0.0462 0.0179 0.0381 0.0145 0.6819 0.7957
Ours 0.0403 0.0187 0.0223 0.0124 0.6843 0.7969

office06 Dust3R† 0.0257 0.0152 0.0218 0.0094 0.7195 0.8477
Ours 0.0879 0.0414 0.0420 0.0154 0.6731 0.7823

office07 Dust3R† 0.0270 0.0132 0.0224 0.0126 0.6864 0.7944
Ours 0.0269 0.0127 0.0232 0.0101 0.6740 0.7772

office09 Dust3R† 0.0351 0.0165 0.0281 0.0102 0.6777 0.7854
Ours 0.0791 0.0279 0.0541 0.0192 0.6579 0.7560

redkit03 Dust3R† 0.0250 0.0112 0.0183 0.0087 0.6983 0.8186
Ours 0.0367 0.0203 0.0158 0.0075 0.6765 0.7849

redkit04 Dust3R† 0.0184 0.0069 0.0235 0.0059 0.6570 0.7509
Ours 0.0242 0.0083 0.0179 0.0061 0.6532 0.7467

redkit06 Dust3R† 0.0240 0.0127 0.0170 0.0075 0.6533 0.7442
Ours 0.0285 0.0120 0.0214 0.0087 0.6404 0.7229

redkit12 Dust3R† 0.0191 0.0068 0.0161 0.0074 0.6423 0.7271
Ours 0.0257 0.0091 0.0178 0.0076 0.6364 0.7211

redkit14 Dust3R† 0.0216 0.0087 0.0197 0.0080 0.6332 0.7106
Ours 0.0187 0.0086 0.0171 0.0070 0.6427 0.7264

heads01 Dust3R† 0.0256 0.0056 0.0082 0.0037 0.6983 0.8180
Ours 0.0267 0.0082 0.0098 0.0043 0.7056 0.8288

Avg. Dust3R† 0.0286 0.0123 0.0280 0.0091 0.6681 0.7683
Ours 0.0342 0.0148 0.0241 0.0085 0.6635 0.7625

Table 7. Per-scene results on 7scenes dataset.

on indoor scene reconstruction. This opens up the possibil-
ity of combining optimization-based techniques in DUSt3R
with Spann3R within one set of model parameters. Addi-
tionally, the inferior results on DTU datasets might be due
to 1) Our training set only consists of a small fraction of
object-centric scenes. 2) DUSt3R uses an internal pair se-
lection model, which can potentially boost the performance
of the object-centric scenes. In contrast, we use a simple
strategy of random sampling.
Per-scene performance. We show a per-scene break-

DUSt3R† DUSt3Rours Ours
Acc: 0.1096 Acc: 0.1986 Acc: 0.2074

Figure 10. Qualitative example of outlier scene on NRGBD.
Due to the presence of the mirror, only DUSt3R† reconstructs the
geometry of the mirror and produces fewer floaters. We hypothe-
size this is due to more synthetic training data used in DUSt3R.

Scene Method Acc↓ Comp↓ NC↑

Mean Med. Mean Med. Mean Med.

SC Dust3R† 0.0731 0.0370 0.0296 0.0107 0.7404 0.9018
Ours 0.0740 0.0359 0.0249 0.0106 0.7234 0.8779

CK Dust3R† 0.0553 0.0252 0.0242 0.0113 0.8167 0.9706
Ours 0.0916 0.0356 0.0310 0.0139 0.7811 0.9460

GWR Dust3R† 0.1097 0.0348 0.0342 0.0170 0.8198 0.9625
Ours 0.2074 0.0646 0.0499 0.0224 0.7628 0.9262

MA Dust3R† 0.0220 0.0154 0.0158 0.0090 0.8126 0.9728
Ours 0.0250 0.0173 0.0160 0.0077 0.8089 0.9677

GR Dust3R† 0.0330 0.0232 0.0554 0.0086 0.8003 0.9534
Ours 0.0486 0.0341 0.0529 0.0101 0.7816 0.9423

Kit. Dust3R† 0.0965 0.0438 0.0656 0.0177 0.8157 0.9732
Ours 0.0649 0.0359 0.0333 0.0132 0.8140 0.9683

WR Dust3R† 0.0300 0.0170 0.0119 0.0071 0.7866 0.9352
Ours 0.0426 0.0270 0.0169 0.0081 0.7500 0.9022

BR Dust3R† 0.0476 0.0211 0.0343 0.0061 0.7460 0.9162
Ours 0.0472 0.0215 0.0255 0.0067 0.7613 0.9312

TG Dust3R† 0.0228 0.0084 0.0130 0.0054 0.8838 0.9911
Ours 0.0207 0.0119 0.0120 0.0065 0.8150 0.9719

Avg. Dust3R† 0.0544 0.0251 0.0315 0.0103 0.8024 0.9529
Ours 0.0691 0.0315 0.0291 0.0110 0.7775 0.9371

Table 8. Per-scene results on NRGBD dataset.

down of quantitative results in Tab. 7 and Tab. 8. Our
method achieves competitive per-scene results compared to
DUSt3R. However, in some challenging scenes, our model
might produce more outliers compared to DUSt3R, which
leads to a higher accuracy score. Fig 10 shows an example
on the NRGBD dataset, where the scene contains a mirror.
This leads our model to produce more outliers and eventu-
ally leads to twice higher accuracy compared to DUSt3R.
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